Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications
نویسندگان
چکیده
Three-dimensional (3D) nanostructures have attracted considerable attention because of their high surface areas and unique properties which gives outstanding performance in catalysis and energy storage applications. This paper proposes the growth mechanism of 3D flower-like β-Ni(OH)2 constructed through a two dimensional sheet framework using a one-step oleylamine-assisted solvothermal approach, where oleylamine acts as the surfactant, co-solvent, stabilizer, and reducing agent. A detailed examination of the product morphology after various reaction times suggested that the self-assembly of flower occurs through a mechanism involving nucleation, Ostwald ripening, and recrystallization. The associated characterization revealed it to be pure β-Ni(OH)2 without any sign of contamination. The effect of the morphology (sheet to 3D flower-like β-Ni(OH)2) on the electrochemical supercapacitive behavior was assessed by cyclic voltammetry and galvanostatic charge-discharge tests. The results showed that 3D flower-like β-Ni(OH)2 exhibited better specific capacitance of ~1567 F g(-1) at a current density of 1 A g(-1) and retained ~25% capacitance at a high current density of 10 A g(-1) compared to the other reference materials. The superior electrochemical properties of the 3D flower-like β-Ni(OH)2 originate from their large specific surface area and unique structure.
منابع مشابه
Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition.
In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2...
متن کاملElectrochemical Deposition of Flower-Like Nickel Nanostructures on Well-Defined n-Si (111):H
In this paper the electrodeposition of nickel on n-Si(111):H substrate, in the presence of sulphuric acid, was studied. Cyclic voltammetry has been used to characterize the electrochemical behavior of the system. The nickel deposits had a flower-like morphology with the sphericalnanostructure nucleus, distributed uniformly on the surfaces of the prepared n-Si(111) substrate.
متن کاملFormation of a nickel hydroxide monolayer on Au through a self-assembled monolayer of 5,5%-dithiobis(2-nitrobenzoic acid): voltammetric, SERS and XPS investigations of the modified electrodes
The formation of self-assembled monolayers (SAM) of 5,5%-dithiobis (2-nitrobenzoic acid), DNBA on gold has enabled further derivatization of the electrode surface with functional moieties anchored to the surface bound molecules. A SAM of DNBA was formed on the Au surface. Nickel ions tethered to the SAM-covered Au surface, were subsequently derivatized electrochemically to yield nickel hydroxid...
متن کامل3D porous nano/micro nickel sulfides with hierarchical structure: controlled synthesis, structure characterization and electrochemical properties.
A series of nickel sulfide nanocrystallines with hierarchical structures was successfully fabricated in situ on a nickel substrate. The nanocrystalline materials with three dimensional (3D) structures were synthesized via self-assembly under moderate conditions, with ethylenediamine and ethylene glycol as the mixed solvents. The structure and morphology of each nickel sulfide could be controlle...
متن کاملSynergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor
Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced ...
متن کامل